Cholinergic modulation of fast inhibitory and excitatory transmission to pedunculopontine thalamic projecting neurons.
نویسندگان
چکیده
The pedunculopontine nucleus (PPN) is part of the cholinergic arm of the reticular activating system, which is mostly active during waking and rapid-eye movement sleep. The PPN projects to the thalamus and receives cholinergic inputs from the laterodorsal tegmental nucleus and contralateral PPN. We employed retrograde labeling and whole cell recordings to determine the modulation of GABAergic, glycinergic, and glutamatergic transmission to PPN thalamic projecting neurons, and their postsynaptic responses to the nonspecific cholinergic agonist carbachol. M2 and M4 muscarinic receptor-modulated inhibitory postsynaptic responses were observed in 73% of PPN output neurons; in 12.9%, M1 and nicotinic receptor-mediated excitation was detected; and muscarinic and nicotinic-modulated fast inhibitory followed by slow excitatory biphasic responses were evident in 6.7% of cells. A significant increase in the frequency of spontaneous excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents during carbachol application was observed in 66.2% and 65.2% of efferent neurons, respectively. This effect was blocked by a M1 antagonist or nonselective muscarinic blocker, indicating that glutamatergic, GABAergic, and/or glycinergic neurons projecting to PPN output neurons are excited through muscarinic receptors. Decreases in the frequency of miniature EPSCs, and amplitude of electrical stimulation-evoked EPSCs, were blocked by a M2 antagonist, suggesting the presence of M2Rs at terminals of presynaptic glutamatergic neurons. Carbachol-induced multiple types of postsynaptic responses, enhancing both inhibitory and excitatory fast transmission to PPN thalamic projecting neurons through muscarinic receptors. These results provide possible implications for the generation of different frequency oscillations in PPN thalamic projecting neurons during distinct sleep-wake states.
منابع مشابه
Cholinergic Modulation of Fast Inhibitory and Excitatory Transmission to 1 Pedunculopontine Thalamic Projecting Neurons
21 The pedunculopontine nucleus (PPN) is part of the cholinergic arm of the reticular 22 activating system, which is mostly active during waking and REM sleep. The PPN 23 projects to the thalamus, and receives cholinergic inputs from the laterodorsal tegmental 24 nucleus and contralateral PPN. We employed retrograde labeling and whole-cell 25 recordings to determine the modulation of GABAergic,...
متن کاملCholinergic responses and intrinsic membrane properties of developing thalamic parafascicular neurons.
Parafascicular (Pf) neurons receive cholinergic input from the pedunculopontine nucleus (PPN), which is active during waking and REM sleep. There is a developmental decrease in REM sleep in humans between birth and puberty and 10-30 days in rat. Previous studies have established an increase in muscarinic and 5-HT1 serotonergic receptor-mediated inhibition and a transition from excitatory to inh...
متن کاملSingle cholinergic mesopontine tegmental neurons project to both the pontine reticular formation and the thalamus in the rat.
Microinjections of the cholinergic agonist carbachol into a caudal part of the pontine reticular formation of the rat induce a rapid eye movement sleep-like state. This carbachol-sensitive region of the pontine reticular formation is innervated by cholinergic neurons in the pedunculopontine and laterodorsol tegmental nuclei. The same population of cholinergic neurons also project heavily to the...
متن کاملBiphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons.
Cholinergic neurons in the basal forebrain and the brainstem form extensive projections to a number of thalamic nuclei. Activation of cholinergic afferents during distinct behavioral states can regulate neuronal firing, transmitter release at glutamatergic and GABAergic synapses, and synchrony in thalamic networks, thereby controlling the flow of sensory information. These effects are thought t...
متن کاملThe comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats
The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 103 5 شماره
صفحات -
تاریخ انتشار 2010